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On the estimation of the reaction mechanisms of thermal
decomposition of solids from the fraction reacted at the maximum
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A number of authors" > have reported a method for determining the reaction
order of thermal decomposition of solids from the value of the reacted fraction, «_,
at the maximum reaction rate. This method has been recently refined by Gyulai and
Greenhow™.

It is well established >- © that n-order kinetic equations can only have theoretical
meaning when the values of m are O, 1/2, 2/2, or 1. Moreover, it is well known that
solid state reactions can be described by a variety of mechanisms. The x«,, values of
reactions taking place via the Avrami-Erofeey mechanism were calculated in a
previous publication”? where it was reported that the values coincide with those
obtained for first-order reactions.

In order to explore the real possibilities of the above-mentioned named proce-
dure for deciding between different reaction mechanisms, this note reports our
calculations of the z_ values of reactions whose rate controlling step is a diffusion
process.

Reactions following a two-dimensional diffusion mechanism fit the kinetic
eqguations:
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% = Ae E[RTm (1)
and

(1——a)ln(1—a:)+a=—%—§—-p(EIRT) @

where « is the reacted fraction, 8, the heating rate, A, the preexponential Arrhenius
factor; E, the activation energy, and p(EfRT) is a function given by the following
expression:
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Since the reaction rate reaches 2 maximum when dZa/ds* = 0, we can write:

i — - A - ERT _ EB
(1 -2 )In(l — 2 )F RT*

From eqns. (2), (3) and (4), afier rearrangement, we obtain:

(l—-zJ)in(l —=2) + 2,
(I — 2 )[n(t — z)F
The values of z_, calculated from eqn. (5) and using the values of g(E/RT) determined

from the corresponding values of p(EfRT) tabulated by Zsaké® are included in Table
I.

@

= g(E/RT) )

Reactions which follow the Jander diffusion mechanism fulfill the rate laws

N33
d_a _ 3 (12 - - e~ EIRT ©)
dre 2[1 — (1 — ']
and
[ - (1 — 9 = 2 s(EIRT) - &~ )
By setting the first derivative of egn. (6) egual to zero, we obtain:
i R — — U3
12— —x) AR EB (8)
[1— Q-2 RT?
which, after substituting eqns. (3) and (7), gives:
=1- - 9
Tm = 172 + s(E/RT) )

The varses of z, as a function of E/RT arc given in Table 1.

In the case of solid state reactions which can be described by the three-dimensi-
onal difiusion mechanism of Ginstling-Brounshtein, thermogravimetric data must
fit the rate laws:

dx

ds
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TABLE 1

VALLUES OF Om AS A FUNCTION OF EJRT FOR VARIOUS DIFFUSION MECHANISMS

Mechanism EIRT )

10 20 30 40 S0 = 2]
Ginstling-Brounstein 0.620 0.729 0.745 0.752 0.758 0.776
Jander 0.587 0.644 0.665 0.673 0.680 0.704
Twordirnensional 0.752 0.795 0.308 0.314 0.319 0.333
TABLE 2

VALUES OF @ FOR 1/2- AND 2/3-ORDER REACTIONS AS A FUNCTION OF EfRT

n EfRTx

10 20 30 40 50 o0
12 0.706 0.727 0.734 0.738 0.740 0.750
23 0.630 0.674 0.681 0.685 0.690 0.700

By setting d?afdr* = 0, we get:

(1 — a-’m)—'”a' —EJRT EB
A = 12
20 — ) M - 17 © RT? 42
which, solved together with egns. (11) and (3) gives:
(2= 3( -0 o] 00
= g(E/RT) (13)

2[(1 — &) — 17"
The values of x4 as a function of E/RT are showa in Table 1.

With regard to the one-dimensional diffusion mechanism described by the
kinetic equations:

d! - l . . —EfRT
and
ART? -
&’ = F - g(EfRT) - e FI%T (15)

it is evident that the reaction rate continuously increases with the temperature until

the reactant is exhausted. This behaviour is the same as that described” for zero-order
reactions.
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Table 2 includes the values of z_ calculated for 1/2- and 2/3-order reactions in a
previous paper®. From Tables | and 2 it can be seen that the a,, values determined
for 2/3-order reactions and for those reactions following the Jander diffusion mecha-
nism are very similar. The x,_, values of 1/2-order reactions and of those taking place
via the Ginstling-Brounshtein mechanism are also in close agreement.

From the considerations above we can conclude that the method proposed in
the literature for determining the order of thermal decomposition reaction of solids
from the value of z, would lead 10 a mis-interpretation of the results. In fact, is
almost impossible to distinguish between reactions which follow Jander, Gistling—
Brounshtein or one-diffusion mechanisms and those described by 1/2-, 2/3- or
zero-order kinetic equations, respectively, as there are no important differences
between the corresponding values of 2. In a similar way, reactions proceeding via
Avrami-Erofeey mechanisms would be confused with first-order reactions.
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